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Abstract 
Classical game theory assumes that players reason their way to Nash Equilibrium. This 

assumption has been challenged by behavioral approaches, which recognize that individuals 

face cognitive constraints, limiting their ability to achieve equilibria. Here, we introduce a new 

measure of a game-complexity, which decomposes each interaction into social and non-social 

arithmetic cognitive demands. Inspired by the economic concept of production functions, we 

develop a psychophysical approach that models sophistication as the product of subjects’ 

capacities on each of these dimensions. In two independent studies, we show that social and 

arithmetic demands are contextual factors for sophistication that behave lawfully with 

psychophysical regularity, and that subjects trade-off these capacities as game-complexity 

varies. Our results are a hybrid, applying concepts from psychophysics and individual decision-

making into strategic social reasoning. These findings present a new approach to behavioral 

game theory, and provide a framework for future neuroimaging and computational psychiatric 

studies.  
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Main text 
In Conan Doyle’s Adventure of the Final Problem, Sherlock Holmes must escape his nemesis, 

Professor Moriarty, after boarding a train to Dover1. Holmes can continue to Dover as planned, 

in hopes of escaping to the Continent, or, anticipating that Moriarty will entrap him at Dover, exit 

the train at Canterbury. Moriarty, also a strategic thinker, might double-cross Holmes and wait at 

Canterbury to kill him. Or, Holmes might choose the triple-cross and continue to Dover after all. 

Classical game theory cuts through such chains of reasoning by supposing that the players 

arrive at a Nash equilibrium2, where each player makes an optimal choice that takes into 

account full knowledge of the other players’ equally optimal strategies. 

In recent decades, alternatives to this equilibrium theory have arisen — principally, level-

k theory3–5 and epistemic game theory6,7— that embrace the cognitive limitations of real human 

players in strategic interactions. These new theories allow for more realistic assumptions about 

how many steps (levels of reasoning) players can engage in when thinking about other players’ 

internal reasoning. They assume that humans are often non-rational players who choose at 

random. One-step-rational players choose strategies that are arithmetically optimal, but without 

any understanding of the reasoning of others. Two-step-rational players, in turn, choose 

optimally in their arithmetic and social reasoning with respect to these one-step-rational players, 

but remain unaware of players with even deeper levels of understanding. And so on. Early 

experiments concluded that players were often limited to two or fewer steps in their social 

reasoning5,8–12. Recently, Kneeland (2015)13 has presented a new methodology involving what 

are called Ring Games, which has allowed identification of reasoning under more plausible 

assumptions, and found that many players reason up to three or four steps, a finding similar to 

qualitative conclusions from social psychology14,15. It is tempting to conclude that classical game 

theory could be augmented by a newer theory that ascribes to each player a maximum level of 

reasoning that is characteristic of that player — what we call that player’s strategic 

sophistication16,17. However, recent work by Alaoui and Penta (2016)18 suggests that 

sophistication is significantly context-dependent, or endogenous in the language of economics. 

For a given cognitive ability, these experiments suggest that behaviorally-expressed 

sophistication varies with incentives and with the perceived sophistication of the other players. 

Other studies have found that strategic sophistication depends on incentives19,20, 

identities10,11,19,21, training19, inattention22, and the type of game being played23,23,24,24,25. 



 4 

In this paper, we introduce a new measure of the complexity of a strategic social 

interaction. Within the same class of games, we find that strategic sophistication changes in a 

lawful fashion as the complexity of the social interaction and the arithmetic problem increase. 

Traditional measures of complexity have included game-tree complexity26 and state-space 

complexity27, or have focused on complexity of solution concepts28. Our measure of complexity 

is inspired by neuroscience and cognitive psychology and consists of two components. The first 

component, in the spirit of Theory of Mind29,30, captures the social demands of the task. We 

refer to this as the social-complexity of the task. The second component captures the non-social 

generalized cognitive demand imposed by the task. We refer to this as the arithmetic-complexity 

of the task. Following standard cognitive theory, we posit that for each level of reasoning in 

which a player engages, a human agent incurs a cognitive cost that is increasing in both the 

social-complexity and the arithmetic-complexity of the environment. We allow different agents to 

have different innate capacities in each of these domains (different types in the jargon of game-

theory) and we also allow for the possibility that these capacities trade-off against each other in 

an individual. From these assumptions, we build a function which describes the chance that a 

player will express (or choose) a given strategy that corresponds to the maximum available 

levels of reasoning, where the chance of selecting that strategy decreases as the complexity of 

the interaction increases in both dimensions. 

We leverage the merits of the Ring Game methodology and test our framework in two 

experiments. In the first, we present subjects with an array of strategic interactions, which vary 

stepwise in their social- and arithmetic-complexity. In the second, we manipulate the cognitive 

resources available to subjects by varying processing time. We find that social- and arithmetic-

complexity are fundamental contextual variables for describing social interactions and we 

provide a simple mathematical formulation that describes the observed psychophysical trade-

offs using an economic production function. We note that in spirit our work aligns closely with 

the production-function approach to cognitive capacity developed by Gabaix and Graeber 

(2023)31. 

Our work opens the door to a systematic study of the effect of complexity on strategic 

reasoning. While increased social-complexity prompts players to reason more deeply about the 

reasoning of others, we find that there is also an increased cognitive burden for subjects as 

social-complexity rises. Turning to arithmetic-complexity, we also find, perhaps less surprisingly, 

an inverse relationship, where the probability that subjects express strategic sophistication goes 

down as arithmetic-complexity rises.   
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We further find that most subjects can trade-off their allocation of cognitive resources 

across these two complexity dimensions to some degree, in a way that varies from individual to 

individual. We also show that the average sophistication level of a subject varies logarithmically 

with processing time. Lastly, we find that some aspects of the performance of an individual 

subject can be related to their performance on a battery of well-validated psychological tests.  

Our experimental design and data analysis thus represent an academic hybrid. We 

apply concepts from individual decision making32,33 and psychophysics34 to strategic choice in 

games. We use an economic formalism to develop a well-calibrated psychophysical function 

that relates graduated changes in the game structure to a dynamic range in subjects’ 

sophistication.  

The conventional game-theoretic description of a social interaction involves a payoff 

matrix or game tree. Modern level-k theory and epistemic game theory add to this description 

with models of the levels of social reasoning engaged in by individual players. In this paper, we 

add a further layer of description, namely, a two-dimensional measure of complexity of the 

game. With this new feature we are able to relate levels of reasoning to complexity in two 

cognitively distinct domains. Our approach of including additional endogeneity in the description 

of a decision maker renders the behavior of the players both analyzable and, to some extent, 

predictable, in a way that has escaped previous approaches. We see our work as opening a 

door to the development of a robust neuroeconomic theory of reasoning in games, which is 

corroborated by more traditional psychological measures. Finally, our novel design is tailored for 

future neuroimaging work aimed at a much more fine-grained understanding of the neural 

representation of cognitive capacities and levels of reasoning in games35–39.  

 

Results 

Task  

We exploited the Ring Game, developed by Kneeland (2015)13, to investigate the 

utilization of cognitive resources in strategic interactions (games). In the original game, each 

player’s payoff depends on their own choice and on the choice of the player sitting to their right, 

whose payoff in turn depends on the choice of the player to their right, and so on around in a 

circle (Fig. 1a, upper row). In the 3-person ring depicted in Fig. 1a, Ann’s payoffs depend on 

Bob’s choices, whose payoffs depend on Charlie’s choices, whose payoffs depend in turn on 
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Ann’s choices. If, for example, Bob chooses action c, and Charlie chooses action e, then Bob 

will end up receiving $15. If Bob chooses action d, and Charlie chooses action f, then Bob will 

receive $5. 

A player’s degree of overall strategic sophistication (or, the number of levels of 

reasoning) refers to how far around the ring, from their position, a subject reasons about the 

behavior of other players. In Fig. 1a (middle), if a subject is L3 (level 3), then, when playing the 

role of Ann, they will reason about Bob’s reasoning about Charlie’s reasoning about themselves 

(Ann). Starting with Charlie, Ann can infer that Charlie will choose 𝑒, since this ensures Charlie 

a larger payoff regardless of Ann’s choice (the choice 𝑒 is “dominant” in the language of game 

theory). Ann then imputes this same reasoning to Bob, and infers that Bob will choose 𝑐, since 

this maximizes Bob’s payoff when Charlie chooses 𝑒. Given that Bob chooses 𝑐, Ann will 

optimally choose 𝑎. Such a player is labeled L3, since the player infers all social and arithmetic 

dependencies around the full ring of three players. A subject with a lower degree of strategic 

sophistication, but who otherwise evaluates the ring correctly on the arithmetic dimension, 

neglects one or more level of reasoning. For example, an L1 subject in the role of Ann does not 

even reason about Bob’s reasoning. Likewise, we demonstrate – via our measure for cognitive 

complexity of the arithmetic dimension – that a subject unable to accurately reason 

arithmetically, but who accurately evaluates the social dependencies, also effectively neglects 

one or more levels of reasoning.  

To measure how subjects handle interactions with increasing social-complexity, we 

systematically manipulated the number of players in the ring (Fig. 1b). At the same time, in our 

variant of the Ring Game, we also varied the number of choices faced by each player, to yield 

increasing arithmetic-complexity (Fig. 1c). By independently varying ring size (social-complexity) 

and matrix size (arithmetic-complexity), we created nine different game types (Fig. 1d). In the 

rings depicted in Fig 1b, there are four players, with two choices available to each player. In Fig. 

1c, there are two players in a ring with four choices available to each player.  

For each game type, we then generated three different versions of a given ring structure, 

by varying the expected value of the “dominant” strategy ($9, $12, or $18), for a total of 27 

specific games (see Fig. 1d, Fig. 7a, and Methods). These experimental manipulations yielded 

27 different ring types with increasing social- and arithmetic-complexities. We then modeled the 

effect of complexity on subjects’ levels of reasoning (see Model section below). 



 7 

On each trial, we revealed each matrix in the ring, for five seconds each, in order from 

right to left. After all matrices had been revealed, subjects were told which role they were 

playing (i.e., which matrix encoded their personal payoffs) in that round (Fig. 1e). After learning 

their role in a specific round, subjects had only five seconds to submit their choice –  

encouraging them to fully process the social information carried in each game before their role 

was revealed, as in the Kneeland (2015)13 design. Subjects played all the roles in all ring types, 

randomized across subjects. Again following Kneeland (2015)13, we built the exclusion 

restriction (ER) criterion into our design, to avoid misidentification of types (Fig. 1a bottom and 

Methods). Specifically, each ring was played twice, with the rows of the rightmost matrix flipped, 

so that the dominant strategy also flipped. The ER assumes that only players with sufficient 

strategic sophistication will adjust their behavior across these two scenarios, effectively 

controlling for lucky guesses. 
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Fig. 1 | Design, Exp. 1. (a) Top: The Ring Game. Subjects played the Ring Game, a series of strategic-
form (matrix) games, where the payoff to each player depends on the choice of the player to the right, and 
the payoff to the last (rightmost) player depends on the choice of the first payer, creating a ring. Middle: 
Player types. Rings are structured such that only the last (rightmost) player has a clearly best (dominant) 
strategy. An L1 player in the last position (Charlie) would choose the dominant action e. An L2 player in 
Bob’s position would choose action c, since this is optimal when Charlie chooses 𝑒. An L3 player in Ann’s 
position would choose action 𝑎, since this is optimal when Bob chooses 𝑐. Bottom: To identify a subject’s 
type, we let subjects play each game twice, while flipping the rows for the last player (Charlie). The exclusion 
restriction13 states that the flip will change Bob’s choice only if he is a true L2 player. Similarly, the flip will 
change Ann’s choice only if she is a true L3 player. (b) By adding more players to the ring, we increased 
the social-complexity of the task. (c) By adding more rows and columns to each matrix, we increased the 
arithmetic-complexity of the task. (d) We designed 27 rings from nine different game types that varied by 
the number of players in each ring (social-complexity), as well as by the number of alternatives in each 
matrix (arithmetic-complexity). The yellow shaded ring is the game type presented in panel a. (e) In each 
trial, game matrices were presented in order from the right to the left, with each matrix shown for five 
seconds. Subjects were then told which role they were playing on that round. Subjects played all the roles 
in all the different rings in random order for a total of 162 trials.  
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Model 

 To model the cognitive demand created by a specific game, we introduce the concept, 

adapted from economics, of a cognitive production function into psychophysics. (See Gabaix and 

Graeber (2023)31 for a similar concept.) In our model, each strategic scenario faced by the 

subjects was described by its social-complexity (denoted by 𝑚	 = 1, 2, …) and arithmetic-

complexity (denoted by 𝑛 = 1, 2, …	). The social-complexity 𝑚 of a given ring is the total number 

of players in the ring, which is equal to the maximal number of iterations (levels of reasoning) 

needed for all players to identify their optimal strategies. The arithmetic-complexity 𝑛 of a given 

ring is equal to the number of choice alternatives that each player faces. With each increment in 

𝑚, players face the task of reasoning one more level about the reasoning of others required to 

understand the game. Likewise, each increment in 𝑛 increases the cognitive demand on players 

required to identify the optimal alternative for each player in the ring. We assume that for each 

additional level of reasoning in which a player engages, there is a cognitive cost (effort) that is 

increasing in both 𝑚 and 𝑛. On this basis, and by analogy with the economic concept of a Cobb-

Douglas production function31,40, we extend classical psychophysics by positing a cognitive 

production function31 for each player that takes 𝑚 and 𝑛 as inputs (independent variables). The 

function outputs, for a given player, the probability that they will reason accurately to the maximum 

number of levels available given their position in the ring. Formally: 

(1) Pr(𝑙!) = 𝐶 2 "
#
3
$
2"
%
3
"&$

, 

where Pr	(. ) denotes probability, 𝑙! is the maximum number of levels of reasoning available for a 

player in position 𝑘 in the ring (measured from the rightmost position), and 𝐶	 ≥ 0 and 0	 ≤ 	𝛼	 ≤ 1 

are subject-specific constants. The constant 𝐶 captures the idea of an overall cognitive capacity 

for each player, where a higher 𝐶 increases the probability that the subject will reason the 

maximum number of levels. The exponent 𝛼 and its complement 1 − 𝛼 capture the relative social 

and arithmetic-reasoning capabilities of the player. Formally, 𝛼 is the elasticity (the ease of trade-

off) of the inverse of social-complexity. It describes the percentage change in the probability of 

maximal reasoning divided by the percentage change in the number of levels about the reasoning 

of others required to understand the game. Similarly, the exponent 1 − 𝛼 is the elasticity of the 

inverse of arithmetic-complexity, with a parallel interpretation. (The general form of the Cobb-

Douglas production function used in economics involves a different exponent 𝛼 and 𝛽 for each of 

two inputs – often taken to be “capital” and “labor,” respectively. We impose the restriction 𝛽 =

1 − 	𝛼 to limit degrees of freedom. Future psychophysical or economic models could relax this 

simplification). 
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 For fixed values of 𝐶 and 𝛼, we can calculate, for different probabilities of maximal 

reasoning Pr(𝑙!), the set of (𝑚, 𝑛) pairs that satisfy Equation (1). This yields iso-probability curves 

(Fig. 1d, Fig. 2a), where the probability is decreasing as we move from one curve to another in a 

northeast direction. We can also depict the effect of increasing overall cognitive capacity 𝐶, which 

moves all iso-probability curves to the northeast (Fig. 2b). A value 𝛼 > 1/2 for the exponent 

indicates that the cognitive load of social-complexity weighs more heavily on the player than does 

arithmetic-complexity (indicating an arithmetic-complexity orientation of the player), while a value 

𝛼 < 1/2 indicates the opposite case (social-complexity orientation); see Figs. 2c and 2d. 

 Beyond the previously mentioned exclusion restriction (ER) used to identify player types, 

the second identification challenge faced in inferring levels of reasoning in a game comes from a 

confounding effect when the ring size is varied. An increase in ring size 𝑚 (social-complexity) 

necessarily also increases the overall cognitive load on a subject, as modeled by the right-hand 

side of Equation (1). But, at the same time, it motivates a subject to reason additional levels to 

arrive at the optimal choice. We wish to isolate the first effect (i.e., the overall cognitive load) and 

we achieve this by choosing as our left-hand variable in Equation (1) the probability of reasoning 

the maximum number of levels, at a given position, rather than some other measure, such as the 

number of levels reasoned, that would reflect both load and motivation effects simultaneously. By 

contrast, there is no confounding effect when we increase the number of options, 𝑚 (arithmetic-

complexity). However, if a subject chooses at random, there is a diminishing probability that the 

option corresponding to the maximum number of levels will be selected. We control for this effect 

empirically (see Performance Index and Methods). 
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Fig. 2 | Model. (a) Each strategic interaction exhibits both social-complexity and arithmetic-complexity. The 
two sources of complexity combine to determine the overall cognitive demand of the task. Here, we plot 
iso-probability curves that depict pairs of complexity numbers that yield the same probability that the subject 
reasons to the maximum number of levels (Equation (1) in the text). The probability decreases as we move 
from one curve to the next in a northeast direction. Light gray points indicate strategic interactions tested in 
our task, which lie outside of the iso-probability curves. (b) 𝐶 captures the idea of an overall capacity, which 
may vary, depending on the subject’s cognitive abilities and the game environment. A higher value of 𝐶 
shifts a given iso-probability curve to the northeast, in the direction of the thicker gray curves. (c-d) We 
expect the probability Pr(𝑙!) to decrease as overall complexity increases. More opaque curves depict higher 
probability. Subjects differ according to the effect of the two sources of complexity on their behavior. (c) A 
subject with 𝛼 > 1/2	 experiences a greater cognitive load from social-complexity- vs. arithmetic- 
complexity, yielding a higher probability Pr(𝑙!) when choice complexity is relatively higher. (d) A subject 
with 𝛼 < 1/2 experiences a greater cognitive load from choice complexity vs. social-complexity, yielding a 
higher probability Pr(𝑙!) when social-complexity is relatively higher. 
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Results from Experiment 1 

We collected data from two populations, one population was composed of students at a highly-

selective US University (NYU sample, N=54) and another was recruited from the general 

population in New York City via CraigsList (CL sample, n=55). Overall, subjects evidenced no 

difficulty understanding and completing the task even though subjects had a rather short 

processing time per decision problem. The average share of missed trials in the CL sample was 

4.12% (min=0, max=35.8%, std=5.61%), and the average response time across subjects was 

2.494 sec (min=0.588, max=3.920, std=0.7165). In the NYU sample 2.68% (min=0, 

max=21.60%, std=3.50%) of trials were missed and average response times were 2.134 sec 

(min=1.203, max=3.745, std=0.561; Supplementary Fig. 1).  

Averaging across subjects and game types, choices matched 𝑙! in 56.13% 

(min=22.84%, max=97.53%, std=19.48%) of the trials in the CL sample, and in 76.00% 

(min=31.48%, max=98.77%, std=19.19%) in the NYU sample. We find evidence for a slow and 

moderate learning effect throughout the experiment, as for each additional trial, the chances of 

subjects’ responses to match 𝑙! increased by 0.0264% in the CL sample (β=0.00070, p<0.0001 

in a probit model clustered by subjects), and by 0.0762% in the NYU sample (β=0.0024, 

p<0.0001, respectively).   

Levels of Reasoning 
As a first step towards understanding how various complexity levels along the social-

arithmetic grid (Fig. 1d) affected subjects’ reasoning in the game, we identified each subject’s 

discrete level of reasoning in each of the 27 rings (see Methods for the identification strategy). 

Subjects were observed to vary between L0 (random choice) and L4 (perfect accounting for the 

optimal behavior of all others), depending on ring size. Fig. 3a presents a histogram of the 

median level of reasoning produced by each subject as a function of ring size, for each of our 

populations. Across the different ring sizes, 41.82-74.55% of subjects in the CL population and 

78.18-96.36% of subjects in the NYU population are classified as L1 or higher. In the CL 

sample, subjects are rather evenly distributed across the different levels of reasoning, 

suggesting a heterogeneity of reasoning capabilities (or types in economic jargon). In contrast, 

the NYU sample is skewed at L4, suggesting that some subjects are capable of iterating 

additional levels of reasoning (beyond L4), a possibility that cannot be directly assessed with the 

four layers of social reasoning we employed (Fig. 3a). In rings with similar structure to the ring 

that Kneeland tested in her study13 (e.g. 4-person 3*3-matrix rings), 36.36% of subjects in the 
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CL sample and 78.18% of subjects in the NYU sample are classified as L1 or above. This 

proportion is somewhat lower than the one found by Kneeland (93%)13, perhaps due to the 

heterogeneity in our subject pool (CL sample) or due to the greater difficulty in our task (27 rings 

compared to 1 with shorter processing time). Nonetheless, this proportion is still large enough to 

indicate that subjects were able to engage in an iterative reasoning process even though they 

were often facing a more difficult task than Kneeland’s.   

 As expected, and by design, for each additional player added to the ring, the average 

level of reasoning increases by 0.291 (𝑝 = 0.02	, ols regression clustered by subjects) in CL and 

by 0.659 in NYU (𝑝 < 0.0001, ols regression clustered by subjects). However, many subjects did 

not exhibit higher levels of reasoning as matrix size rose. Indeed, we found a negative 

interaction between the matrix size and ring size, also evident from the downward bowing of the 

curves depicted in Fig. 3b (𝛽 = −0.106, 𝑝 = 0.005 in the CL sample, and 𝛽 = −0.106, 𝑝 = 0.013 

in the NYU sample, ols regression clustered by subjects). Note that for larger matrix sizes (3*3 

and 4*4 in CL, and 4*4 in NYU), when moving from 3-person to 4-person rings, curves are 

either parallel to the x-axis or even decline somewhat, suggesting that subjects reach a 

capacity-limit as social-complexity and/or arithmetic-complexity increase. 

We further examined the chances of being classified as L1 or higher as a function of 

complexity (Fig. 3c). We found a significant negative interaction between ring size and matrix 

size (CL sample: 𝛽 = −0.130, 𝑝 < 0.0001, NYU sample: 𝛽 = −0.118, 𝑝 < 0.0001, probit 

regression clustered by subjects), suggesting that subjects’ capacity was not sufficient for 

identifying the dominant strategy once complexity increased along either dimension. We found a 

similar pattern when we examined the chances for being classified as L2 or higher (Fig. 3d, CL 

sample: 𝛽 = −0.089, 𝑝 < 0.0001; NYU sample: 𝛽 = −0.081, 𝑝 < 0.0001, probit regression 

clustered by subjects). It is important to note that these results run counter to standard 

economic theory, which argues that subjects’ level of reasoning remains constant within a 

specific class of games (when no experimental manipulation of features like the monetary 

incentives or the identity of players is undertaken)18.  

We note that due to the exclusion restriction criterion (ER, see Task and Methods), it was 

less likely for a subject to be classified as the same type (at a particular level of reasoning), as 

more players were added to the ring. For example, an individual could achieve classification as 

L2 in a 2-person ring with only four “correct” choices, but the same L2 type would require eight 

“correct” choices in a 4-person ring (see Methods).  
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For that reason, we also introduce a relaxed version of Kneeland’s identification strategy 

that imposed the same classification criteria for each type regardless of ring size (ERrel, see 

Methods). Importantly, our main findings hold when using ERrel (Supplementary Fig. 2). 

Supplementary Figs. 3 and 4 further present two sensitivity tests performed on these two 

identification strategies (ERNo and ERrelNo, see Methods). Here, too, our results remain 

unchanged. 

Finally, we find that having a higher level of reasoning paid off for subjects in the NYU 

sample, who were generally playing against more sophisticated players (Supplementary Fig. 5), 

but did not offer additional payoffs in the CL sample. Moving one level up increased subjects’ 

winning amounts by $3.856 (p=0.009, ols regression) in the NYU sample, but had no effect in 

the CL sample (β=2.497, p=0.15, ols regression).    

Fig. 3 | Classification into levels of reasoning, Exp. 1. (a) Distributions of types by the number of players 
in the ring. The x-axis presents the median type per subject for all the rings with the same ring size. Left – 
CL sample, right – NYU sample. Upper row – 2-persons rings (rings #1-9), middle row – 3-persons rings 
(rings #10-18), bottom row – 4-persons rings (rings #19-27). (b) Psychometric curves. Mean level of 
reasoning by ring size and matrix size. Error bars represent standard errors. Left – CL sample, right -  NYU 
sample. (c) Heat maps showing the share of subjects classified as L1 or above as a function of ring size 
and matrix size. Subjects were classified as L1 or above if their median type in each cell in the 3*3 grid 
(which includes 3 different rings) was L1 or higher. (d) Same as (c), but for L2. (a-d) NCL = 55, NNYU=54. 
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Ruling out Simple Heuristics 

Next, we examined the possibility that subjects’ choices could have been guided by simple 

heuristics, which do not require an iterative mentalizing process. To that end, we examined two 

alternative models: (1) choosing the option that included the largest single payoff in the matrix 

faced by the chooser (MAX), and (2) avoiding the option with the lowest payoff in the matrix 

under consideration by the chooser (noMIN). Importantly, both the MAX and the noMIN 

heuristics do not depend on the choices of other players and hence should not involve 

mentalizing or social cognition. For 11 rings (out of 27) these heuristics produce the same 

choice behavior as would be observed from a perfectly sophisticated chooser who follows 𝑙!. 

We found, however, that only five subjects (out of 109) used these heuristics in more than two 

thirds (18) of the rings. For a detailed account on this analysis, see Supplementary Note 3, 

Supplementary Table 11 and Supplementary Fig. 6.  

 

Performance Index, Capacity Frontiers and Model-Free Classification 
To empirically measure 𝑃𝑟(𝑙!), the probability that an individual will express the maximal levels 

of reasoning (𝑙!) in position 𝑘 in a given ring, we developed a Performance Index (PI): For each 

of the nine game types (Fig. 1d), we computed the share of responses (trials) that match 𝑙!, 

normalized by chance-level performance in a specific game type (chance-levels vary with matrix 

size, see Methods).  

We then visualize PI by creating for each subject a Capacity Frontier (Fig. 4a-b). The 

shaded area in each table in Fig. 4a indicates the game types in which a particular subject was 

able to reason beyond chance-level. The shape of the shaded region – whether more horizontal 

or vertical – indicates each subject’s individual tendency towards performing better as ring size 

(social-complexity) or matrix size (arithmetic-complexity) increases. The Capacity Frontiers are 

a model-free representation of different kinds of individuals, as depicted using the Cobb-

Douglas approach in Fig. 2b-d. Fig. 4a presents an illustration for five such types of individuals 

when examined in this manner. Fig. 4b presents frontiers for five representative subjects which 

largely mirror these illustrations.  

 To quantify this notion, we compute for each subject a Capacity Index and Trade-Off 

Index (TOI) (see Methods) based on summary statistics. The Capacity Index is the average PI 

(Performance Index) across all game types. A Capacity Index=1 is a subject who responds to all 

combinations of ring size and matrix size optimally. A Capacity Index=0 identifies a subject 
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whose choices are random (L0) for all game-types. Overall, subjects in the NYU sample 

exhibited a higher Capacity Index than subjects in the CL sample (p<0.0001, two independent 

samples, one-sided t-test, Fig. 4c). 

The TOI evaluates subjects’ tendency to perform better (higher PI) as one complexity 

dimension increases rather than another. A TOI=0 describes a subject for whom increases in 

ring size (social-complexity) and matrix size (arithmetic-complexity) exert equal effects on 

performance. A TOI>0 describes a subject who can achieve higher performance as social-

complexity (ring size) increases than in response to equivalent increases in arithmetic-

complexity (matrix size). A TOI<0 indicates the reverse, a higher performance as arithmetic-

complexity increases than in response to equivalent increases in social-complexity. In both 

samples, we observe an asymmetry towards the demands imposed by social-complexity 

(TOI>0), though subjects in the NYU sample are more concentrated around TOI=0 (Fig. 4d-e, 

marginally significant at p=0.0531, Kruskal-Wallis test). Note, however, that the individual 

subjects who exhibit extremely strong asymmetry favoring social-complexity (TOI>1) also tend 

to exhibit very low overall capacity scores (mean Capacity Index=0.0572 in CL and 0.1151 in 

NYU, compared with sample averages of 0.3466 and 0.6371, respectively). Overall, we 

observed that the vast majority of subjects (82.6%) lay in the −0.5 ≤ 𝑇𝑂𝐼 ≤ 0.5 band. Thus, 

subjects can largely trade-off (substitute) the allocation of their capacities between social and 

arithmetic demands.  

Finally, we pay careful attention to reasoning in pairs of rings which show roughly 

complementary social- and arithmetic-complexity. Such pairs include 2*2 3-person vs. 3*3 2-

person rings (pair #1); 4*4 2-person vs. 2*2 4-person rings (pair #2); and 4*4 3-person vs. 3*3 4-

person rings (pair #3). Our populations behave as would be expected from a cohort with a 

TOI~0, there is no difference, at the population-level, in performance across these 

complementary pairs of rings (CL:	𝛽 = −0.0320, 𝑝 = 0.057; NYU: 𝛽 = 0.0161, 𝑝 = 0.301, ols 

regression clustered by subjects, Fig. 4f). In contrast, we do identify a significant decline in PI as 

overall complexity increases moving outbound from the origin (CL: 𝛽 = −0.0324, 𝑝 = 0.002; 

NYU: 𝛽 = −0.0308, 𝑝 < 0.0001,	ols regression clustered by subjects, Fig. 4f).  
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Fig. 4 | Model-free analysis, Exp. 1. (a-b) Capacity frontiers. For each subject, we can identify the subset 
of game types on which they reason above the chance level. The capacity axis shows increasing levels of 
performance (PI) across all game types. The trade-off axis refers to subjects’ tendency to exhibit beyond-
chance reasoning in rings with either a higher social-complexity (larger ring size) or rings with a higher 
arithmetic-complexity (larger matrix size; see Methods). (a) Conceptual illustration. Shaded area indicates 
rings for which the hypothetical subjects chose above chance-level (PI>0). (b) Representative subjects. (c) 
Distributions of the Capacity Index in each sample. CL: mean=0.3466, std=0.2853, min=0, max=0.9609, 
NYU: mean=0.6371, std=0.2848, min=0.0279, max=0.9794. Scatter plot points indicate individual subjects. 
Violin plots show Kernel smoothing, boxplots indicate interquartile range. (d) Histograms show distributions 
of TOI with Kernel smoothing by sample. CL: mean= -0.0776, std= 0.5846, min=-1, max=3; NYU: 
mean=0.0555, std= 0.5104, min= -0.5236, max= 2.6334. (e) Spread of TOI vs. the Capacity index, by 
sample. Scatters show individual subjects. (f) Mean PI in rings that show complementary social- and 
arithmetic-complexity. Left to right: pair #1: 3*3 2-person vs. 2*2 3-person rings; pair #2: 4*4 2-person vs. 
2*2 4-person rings; pair #3: 4*4 3-person vs 3*3 4-person rings. Error bars indicate standard errors. (c-f) 
NCL = 55, NNYU=54. 
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Structural Psychophysical Analysis of Subjects’ Task Performance  
A central goal of this work is to validate a psychophysical model of how social and arithmetic 

cognitive capacities influence strategic reasoning in social interactions. To accomplish this, we 

modeled the individual likelihood to engage in iterative reasoning with a standard Cobb-

Douglass production function from economics, as described above in eq. (1). We employed an 

ols estimation technique (see eq. (4) in Methods), using the specific cognitive demands of each 

ring (social- and arithmetic-complexities) as independent variables, and our Performance Index 

as the dependent variable. [We report both the sample pooled aggregate parameters (Table 1, 

Fig. 5a), as well as the subject-level estimates (Supplementary Tables 3-4, Fig. 5b).] 

Our model relies on capturing human social strategic reasoning with two parameters, 𝐶 

and 𝛼. 𝐶 is intended to capture the overall capacity of an individual, with higher values of 𝐶 

identifying individuals (or populations), who can achieve higher levels of reasoning under a 

given set of conditions. The parameter α is intended to capture the relative social and arithmetic 

capacities, with values below 0.5 identifying a higher relative social capacity and values above 

0.5 capturing a higher arithmetic capacity. 

In the CL sample, which more closely approximates the general population, we found 

that 𝐶 was 3.83 (in arbitrary units; a.u.). In contrast, in the NYU sample of highly-selective US 

university students we found that 𝐶 was 4.62. This difference between the two populations in 

overall capacity was highly significant (captured by a dummy for the sample in an OLS 

regression clustered by subjects, p<0.0001, Supplementary Table 5). Following eq. (1), and 

holding all other parameters equal, the higher capacity of the university students, would 

translate to PI scores higher by ~0.2 (a.u.), meaning, that they were 20% more likely to reach 

the maximal levels of reasoning in a given trial.  

Turning to 𝛼, the parameter which indicates whether a subject is more socially or 

arithmetically capable, we found that across individuals the estimated values range between 

0.346 (SE=0.1218, p=0.0088, high social-complexity orientation) and 0.786 (SE=0.1334, 

p<0.0001, high arithmetic-complexity orientation). These individual estimates were significantly 

different from 0 at p<0.005 for all the subjects in our study. A Shapiro-Wilk test verified that the 

alpha parameter is normally-distributed (W=0.988, V=1.077, p=0.4341), suggesting that the 

individual differences in social and arithmetic capabilities we observed appear to reflect a 

random variation in individuals in our populations. We note that, on average, our subjects 

exhibited a slight bias towards a higher arithmetic, rather than social, capacity (t(108)=4.3921, 
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p<0.0001, one-sample t-test with H0: α=0.5, also evident by the population estimate for α, which 

was 0.5385 (SE=0.0088, p<0.0001), Table 1). 

Even though subjects exhibited individual differences in their relative social and 

arithmetic capacities, we did not find any significant differences in the value of 𝛼 when 

comparing between our two populations. The CL sample showed an average estimated 𝛼 of 

0.5420 (SE=0.0126, p<0.0001) versus an estimate of 0.5349 (SE=0.0122, p<0.0001) in our 

sample of university students (t(107)=0.402, p=0.6885, two-sided two-sample t-test). Thus, 

although our sample of university students did show a significantly high overall capacity, this 

was not accompanied by a significant difference in their relative social and arithmetic capacities.   

In order to assess the relationship between overall capacity and the bias towards 

arithmetic-capacity, we also examined the correlation between these parameters across all 

individuals from both cohorts. We found an inverse quadric relationship between the C and α 

parameters (first-order polynomial: β=0.5853, p<0.0001, second-order polynomial: β=-0.0690, 

p<0.00001, ols regression). Subjects with a very low overall capacity have no detectable 

orientation towards either dimension (social or arithmetic) because their responses are 

essentially random. Subjects with a very high overall capacity also show no significant 

orientation favoring either dimension, because they achieve essentially perfect performance up 

to the highest level tested in our task. However, subjects with an intermediate overall capacity 

do show a bias towards the arithmetic capacity. To assess the robustness of this conclusion, we 

examined the correlation between the model-free Capacity Index and TOI, and the model 

parameters C and α. We found a very strong correlation between the non-parametric capacity 

and C (r=0.9984, p<0.0001), as well as a strong correlation between TOI and αas shown in Fig. 

5d (r=-0.4967, p<0.0001). This result further validates our modelling approach. 

 

Table 1 | Pooled structural estimates, Exp. 1. Estimation via constrained OLS regression, clustered by 
subjects. 

  
  

α C 

N 

estimate SE pval estimate 

ln(C), 
regression 
constant SE pval 

Full Sample 0.5385 0.0088 <0.0001 4.2015 1.4354 0.0198 <0.0001 2,943 
CL 0.5420 0.0126 <0.0001 3.8275 1.3422 0.0253 <0.0001 1,485 
NYU 0.5349 0.0122 <0.0001 4.6200 1.5304 0.0249 <0.0001 1,458 
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Fig. 5 | Structural model fitting. (a-b) Iso-probability curves. We fit subjects with our psychophysical 
variant of the standard Cobb-Douglas function (eq. 1 and Methods), and plot the derived iso-probability 
curves. Every coordinate on the same curve, has an equal PI. As curves move to the northeast PIs decline. 
Curves are plotted on top of the measured capacity frontiers. (a) Population-level estimates (left – CL, right 
– NYU). Iso-probability curves shown mark PIs of 0.25, 0.5 and 0.75. (b) Representative subjects. Iso-
probability curves show PIs of 0.25, 0.5 and 0.75. Curves are shown for four of the subjects in Fig. 4b. 
(Subject 172 did not exceed chance level and is not shown). (c) Relationship between the C and α  
parameters from the Cobb-Douglas function. Dashed line indicates the quadric fit from a least-squares 
estimation.(d) Model-free trade-off index (TOI) compared with structural estimates of the α parameter from 
the Cobb Douglas function for all subjects. Inset: outliers with TOI>1. Dashed lined is least-squares fit). (c-
d). scatters represent individual subjects, green – CL sample, purple – NYU sample (NCL = 55, NNYU=54). 

 

Experiment 2: The Effect of Processing Time on Levels of Reasoning 

In a second experiment (Exp. 2), we found that processing time strongly influences the 

levels of reasoning we observed. Our goal in Exp. 2 was to manipulate available cognitive 

resources by regulating processing time, and then investigate the relationship between available 

resources and sophistication. We examined a total of five processing times, from 1.6s to 10s 

(Fig. 6a and Methods). Even at the shortest processing times, subjects were able to complete 
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the task effectively (94% completion rate in the 1.6s treatment, Fig. 6b). We thus restrict our 

analysis to completed trials, and treat all processing times as yielding valid estimates of 

capacity.  

We assessed the effect of processing time on subjects’ reasoning via changes in the 

extracted parameters from our psychophysical (production function-based) model (Fig. 6c, 

Table 2). We find that the population-level estimate of the 𝐶 parameter, which denotes the 

overall capacity of the subject, increases from 4.0436 (a.u.) in the shortest viewing duration 

(1.6s) to 5.1179 (a.u.) in the longest viewing duration (10s) (Table 2, Supplementary Table 6 

and Supplementary Fig. 7b). We conclude that longer processing times increase the overall 

capacity available for reasoning. 

The lawful increase in the 𝐶 parameter can be described as a logarithmic function of 

processing time: 

(2) 𝑙𝑛(𝐶) = 𝑎 ∗ ln(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒) + 𝑏. 

We fit the data describing Capacity as a function of time with a multiplicatively scaled natural 

logarithm with a non-zero intercept and thus two free parameters,	𝑎 and 𝑏 (Fig. 6d and 

Methods). We find that for each additional second of processing time, ln	(𝐶) increases by 

~0.123 (a.u.) divided by the current duration of processing time ( '
'(
= )."+,

-./01223%4	(3#1
), a 

relationship well captured by the multiplicative parameter 𝑎 (a=0.1229, CI=[0.7662; 0.1691]). 

Plugging-in those values into the model detailed in eq. (1), if current processing time was 1.6s, 

the likelihood that a subject would reach the maximal level of reasoning in a given trial (Pr	(𝑙!)) 

would increase by ~8% for one additional second of processing but only by ~2% if the current 

processing time was 6.4s.  (See Supplementary Table 7. Supplementary Fig. 7a replicates this 

result using the model-free Capacity Index instead of the parametrically estimated 𝐶). This 

lawful relation reveals that processing determines a subjects’ accessible capacity, and hence 

the bounds on their sophistication. We note that this relationship is highly reminiscent of Fitt’s 

Law, which states that measured performance accuracy is a function of task difficulty divided by 

task duration41.  

Unlike the 𝐶 parameter, the 𝛼 parameter – which captures the trade-offs between social and 

arithmetic capacities – remains unchanged across processing time treatments (Fig. 6e, Table 

2). We find that 𝛼 values are approximated at 0.5 at the population-level, regardless of 
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processing time. Hence, subjects trade-off social and arithmetic capacities at the same rate, 

even when the available computational resources change. 

Fig. 6 | Exp. 2. (a) Processing time manipulation. In Exp. 2, we utilized 18 out of the 27 rings used in Exp. 
1 to reduce total experimental time. Each subject (N=26) was assigned to two processing times out of five 
possible durations (1.6, 2.5, 4, 6.3 or 10 sec). Subjects completed all 18 rings twice for a total of 216 trials, 
108 trials in each treatment. Processing times randomly alternated between blocks of 27 trials each. (b-e) 
We pooled subjects’ responses and compared performance across treatments. (b) Share of missed trials 
across treatments. (c) Capacity frontiers with their Iso-probability curves across processing time treatments. 
The contour plots are based on population-level parameters extracted from the Cobb-Douglas model for 
each treatment (see Table 2) and indicate PI=0.25, 0.5 and 0.75.  (d) 𝐶 parameter across treatments of 
processing time. Gray curve indicates the natural log fit: ln(𝐶) = 𝑎 ln(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) + 𝑏, such that 
a=0.1229 CI=[0.07662; 0.1691], b= 1.346, CI=[1.275; 1.417], RMSE=0.0211. See Supplementary Fig. 7a 
for the same analysis using the model-free Capacity Index instead of the parametric 𝐶. (e) 𝛼 parameter 
across treatments of processing time. (d-e) Error bars indicate the standard error of the estimated 
parameters. X indicates the estimates on data from Exp. 1 (NYU sample).   



 23 

Table 2 | Pooled structural estimates, Exp. 2. Estimation via constrained OLS regression, clustered by 
subjects. 

Processing 
time  

𝛼 C 

N 

Estimate SE pval Estimate 

ln(C), 
Regression 

constant SE pval 
1.6 sec 0.4794 0.0362 <0.0001 4.0436 1.3971 0.0371 <0.0001 216 
2.5 sec 0.4511 0.0328 <0.0001 4.2905 1.4564 0.0534 <0.0001 216 
4 sec 0.5441 0.0189 <0.0001 4.6812 1.5436 0.0648 <0.0001 162 

6.3 sec 0.5216 0.0337 <0.0001 4.7072 1.5491 0.0562 <0.0001 198 
10 sec 0.4808 0.0255 <0.0001 5.1179 1.6327 0.0524 <0.0001 180 

 

Incentives Influence Available Capacity 

The levels of reasoning achieved by subjects also reflected the monetary incentives 

presented on each trial. In both experiments, we systematically manipulated the difference in 

payoff level (in dollars) between the best and worst options for the last player in each of the 

rings we examined (dominant vs dominated strategies, Fig. 7a and Methods). We hypothesized 

that in rounds with larger monetary differences between good and bad outcomes, subjects 

would allocate additional cognitive resources and thus could achieve higher levels of 

reasoning18. Such an observation would highlight that incentive magnitudes also influence the 

levels of reasoning a subject expresses.   

To test this hypothesis, we estimated our psychophysical model for each payoff level, 

and examined the impact of the magnitude of the differences in payoff level on the parameters 

𝐶 and 𝛼 (Fig 7b, Supplementary Table 8). Both Exp. 1 and Exp. 2 revealed an inverse 

relationship between payoff levels and capacity (𝐶 parameter). In Exp. 1, we found that when 

moving from the lowest to the highest payoff difference, capacity increased from 3.768 to 3.900 

(a.u.) in the CL sample and 4.525 to 4.722 (a.u.) in NYU (constrained OLS regression. 

Estimates of the 𝐶 parameter are significant at p<0.0001, Fig. 7c and Supplementary Tables 8).  

In fact, moving up one level of payoff difference increased ln(C) by 0.0193 (a.u., payoff 

difference was entered as a categorical variable to a constrained ols regression, p<0.001, 

Supplementary Table 9). In Exp. 2, the increase in accessible capacity due to payoff differences 

is evidenced by a shift upwards of the logarithmic function, capturing the relationship between 

capacity and processing time (eq. (2)). The model constant, b, increased from 1.306 (CI=[1.239; 

1.372]) in the lowest payoff difference to 1.386 (CI=[1.311; 1.461]) in the highest payoff 

difference (Fig. 7d. Estimates of the 𝐶 parameter were significant at p<0.0001, Supplementary 
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Table 10). These results resonate with the main conclusions drawn by Alaoui and Penta 

(2016)18, indicating that monetary incentives should be expected to endogenously regulate 

accessible cognitive capacities devoted to reasoning.  

Interestingly, however, in Exp. 1 the relative allocation of processing resources between 

arithmetic and social domains was also influenced by payoff difference. At low payoff levels, 

where accessible capacity was limited, subjects allocated a larger fraction of total resources to 

social capacity. As payoffs differences increased, subjects shifted towards a more equal 

allocation in that experiment. Analyzing the impact of payoff level on the arithmetic-social trade-

off parameter, 𝛼, revealed a systematic shift. At higher payoff differences, subjects exhibited an 

arithmetic orientation in both samples. In the CL sample, 𝛼 was estimated at 0.5389 

(SE=0.0218) at the highest payoff difference, and 0.5698 (SE=0.0177) at the medium payoff 

difference. In the NYU sample it was estimated at 0.5420 (SE=0.0178) at the highest payoff 

difference, and 0.5805 (SE=0.1701) at the medium payoff difference. In contrast, we obtained 

evidence of a moderate social orientation in the lowest payoff difference, where 𝛼 was 

estimated at 0.5172 (SE=0.0193) in the CL sample, and as low as 0.4823 (SE=0.0184) in the 

NYU sample (Fig. 7e and Supplementary Table 8). This change in resource allocation as a 

function of payoff in Exp. 1 implies that the allocation of resources to the social dimension is 

less costly than an allocation to the arithmetic dimension. However, it should be noted that the 

results from Exp. 2 do not provide further support for this conclusion (Fig. 7f).  
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Fig. 7 | Incentives manipulation. (a) Incentives manipulation. We manipulated payoff levels by controlling 
the expected value (EV) of the dominating strategy (DS) for the last player in the ring. We created three 
levels of payoff difference: for each cell on the 3*3 rings grid, one ring had a DS with EV=18 (high), one 
ring had a DS with EV=12 (medium), and one ring had a DS with EV=9 (low). The other options (strategies) 
in the payoff matrix always had an EV=6. In Exp. 2, subjects only played the high and low rings. (b) Iso-
probability curves sorted by payoff differences. Curves were fit at the population-level (eq. 1 and Methods), 
and plot iso-probability curves. As curves move to the northeast probability of an optimal response, PIs, 
decline. Curves are plotted on top of the non-parametrically measured capacity frontiers (left – CL, right – 
NYU). Iso-probability curves shown mark PIs of 0.25, 0.5 and 0.75. (c) Exp. 1. 𝐶 parameter in each sample 
by payoff level (Green – CL sample, Purple – NYU sample). (d) Exp. 2. 𝐶 parameter by payoff difference 
across treatments of processing time. Gray curves indicate the fit curve: ln(𝐶) = 𝑎 ln(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) +
𝑏. Low payoff difference: a=0.1152 CI=[0.0663; 0.1641], b= 1.386, CI=[1.311; 1.461], RMSE = 0.0223. High 
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payoff difference: a=0.1306 CI=[0.0869; 0.1743], b= 1.306, CI=[1.239; 1.372], RMSE = 0.0199. (e) Exp. 1. 
𝛼 parameter in each sample plotted as a function of payoff difference (Green – CL sample, Purple – NYU 
sample). (f) Exp. 2. 𝛼 parameter by payoff level across treatments that varied processing time.  (c-e) Error 
bars indicate standard error of the estimated parameters. See Supplementary Fig. 8 for a complementary 
model-free analysis. 

 

Relating our findings to classical psychological measures of capacity 

Our findings indicate that subjects vary idiosyncratically in their arithmetic and social capacities, 

and that this influences the sophistication they employ as features of the game theoretic task 

they face change. We demonstrated this by using the common-practice from the behavioral 

economics literature of classification into Levels of reasoning, by using a model-free analysis, 

and by using a psychophysical analysis that employed a Cobb-Douglas cognitive production 

function. All three approaches indicate that subjects differ in how they allocate their internal 

cognitive resources; that they have idiosyncratic capabilities over resource utilization, in 

economic parlance. Our final aim was to determine whether we could relate these idiosyncratic 

capabilities to existing psychological measures of personality traits42. The most relevant 

psychological measures of traits that we examined in these same subjects were IQ (via Raven 

matrices43), an estimate of working memory capacity (WM, via the OSpan task44) and an 

estimate of qualitative mentalizing capacity (via the Perspective Taking task15). The full list of 

psychological measures we examine is detailed in Supplementary Table 12.  

To relate these measures to the arithmetic and social capacities measured with our Ring 

Game task, we first reduced the dimensionality of scores derived from all of the psychological 

instruments we examined with a principal component analysis (PCA). We then focused on PCs 

1-2, shown in Fig 8a, which capture nearly all of the variance in our measures (94.44% of 

explained variance, 69.55% and 24.89% for each component, respectively). We next correlated 

task performance measurements with these PCs (Fig. 8b). All of the performance measures 

from the Ring Game that capture total capacity correlated strongly with PC1 (mean level of 

reasoning: r=0.4825, Capacity Index: r=0.4963, Cobb-Douglas 𝐶 parameter: r=0.4988, see 

Methods). These results suggest that overall capacity is strongly related to the classic 

psychological traits of IQ and working memory. In contrast, only our model-free TOI, our 

estimate of trade-offs over resource allocation (relative cognitive load) aligned weakly 

(r=0.1467), with a second PC that was associated with other elements of IQ and working 

memory (Fig. 8). Future work will be required to identify psychological measures that predict 

both the level of social capacity in an individual and the trade-off between social and arithmetic 

capacities. 
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Fig. 8 | External validation of findings (Exp. 1). 
(a) Loading factors of external tasks on principal 
components 1 and 2. (b) Correlations between 
PCs 1-2 and task performance measures: mean 
sophistication level, Capacity Index, trade-off index 
(TOI) and the Cobb-Douglass structural 
parameters, C and α.   
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Discussion 

Summary 

We developed and explored the concept of a cognitive production function in order to 

describe how subjects’ reasoning in strategic interactions is affected by complexity across two 

dimensions of interaction — a social dimension that captures the need to represent the mental 

states of other players and an arithmetic dimension that captures the need to represent non-

social complexities. The strategic sophistication of subjects was measured while we 

manipulated these two forms of complexity using psychophysical variations of Kneeland’s Ring 

Game13. Previous studies4,5,16,17 have represented the cognitive sophistication of a subject as a 

fixed feature of the individual. Our results challenge this conclusion, indicating that an 

individual’s sophistication, or level of reasoning, depends on an interaction between that 

individual’s social-arithmetic capabilities and the precise demands of a given problem. 

Increased social-complexity does prompt individuals to reason more deeply about the mental 

states of others, but we find clear evidence that this increase in social-complexity also imposes 

an increased cognitive load. Similarly, we find that increased arithmetic-complexity also imposes 

a cognitive load. Across the two dimensions, the higher cognitive load reduces the chances that 

a subject engages in the maximum number of levels of reasoning available. Using both model-

free measures and model-based (structural) estimates, we characterized the abilities of 

individual subjects across both social and arithmetic dimensions, and we also characterized the 

way performance across these dimensions trade-off as complexity varies. Indeed, we found 

significant differences between individuals and across our two samples, one drawn from the 

general public and the other from a highly-selective US university.  

 To test further our conclusion that the demands of the problem interact with the 

capabilities of the decision maker to define the cognitive sophistication of the individual’s 

response, we also examined the effect of incentives and processing time on sophistication. In 

line with Alaoui and Penta (2016)18, we found that when we increased the monetary impact of a 

decision, subjects improved their performance on both dimensions, while still being constrained 

by their relative capabilities on each dimension. In the second experiment, we extended this 

approach by causally manipulating the cognitive resources available to our subjects; changing 

the duration of processing time that subjects had to perform on each iteration of the Ring Game. 

We found that individuals’ estimated capacity increased with each additional second of 

processing time, in a fashion quite precisely following a logarithmic progression as is often the 

case in psychophysical settings41. Finally, we found that an individual’s capacity estimates 
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correlated with their scores on both an IQ test and a working memory test. We have not yet 

identified a psychological testing regime that correlates with our estimates of the trade-offs over 

the social and arithmetic dimensions of complexity. 

Previous work by behavioral and experimental game theorists has attempted to classify 

individuals with regard to their level of strategic sophistication (or “type” in game-theory 

language). Level-k5,13, which dominates behavioral game theory, hypothesizes that each subject 

can be classified as reasoning to a fixed number of levels. However, numerous studies have 

found that an individual’s type (level of reasoning) depends on the task they are set10,18,19,21,23,24. 

Our results provide a fully cognitive-based resolution of these difficulties, supported by a tested 

experimental design. The social- and arithmetic-complexities of an interaction, the monetary 

incentives of a given task, and even the processing time allowed, all affect the strategic 

sophistication exhibited by an individual. The difficulty to date in reliably classifying individuals 

into types, together with heterogeneity of levels of reasoning within-subject, is not the result of 

misidentification or shortcomings in experimental design, but a genuine endogeneity (in the 

terminology of economics) to task context originating in cognitive constraints.   

Our findings are complementary to recent advances, such as Alaoui and Penta (2016)18, 

who introduced a framework for analyzing endogeneity in subjects’ sophistication in games 

created by monetary incentives, and Gabaix and Graber (2023)31, who introduced a model 

designed to capture subjective complexity of a decision problem (via a Cobb-Douglas 

production function). We see these studies, together with our own work, as laying the 

foundations for a cognitive theory of reasoning in games. 

Classical psychophysics has tended to assess individuals along single dimensions34,45. 

Measures of visual or acoustic sensitivity record thresholds and the rates at which percepts 

grow using unidimensional strategies. One exception is classical two-dimensional signal 

detection theory, which views choices as the product of two-dimensional stimuli, allowing for 

covariance across the two dimensions46. Even this approach, however, views subject 

performance as a passive product of stimulus properties. Here, we develop a different form of 

multidimensional psychophysics47 drawn from the economics of production functions. We build 

a novel psychophysical model in which individuals can regulate the allocation of internal 

cognitive resources to some individually-fixed degree. We represent subjects as having internal 

(or endogenous) capabilities that vary along two dimensions – social and arithmetic – which can 

be traded-off in a non-linear fashion against one another, in a subject-specific manner. This 

novel use of a production-function approach may offer an interesting direction in the 
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psychophysical analysis of higher cognitive functions and may be of particular use to 

neurobiologists. 

The non-linear individual-specific trade-offs we uncovered between social- and 

arithmetic-complexity suggest a direct neurobiological approach to measuring an individual’s 

psychophysically-measured cognitive production function. The existing neurobiological literature 

point to a direct link between the structure and activity of the temporoparietal junction (TPj) and 

an individual’s ability to represent social-complexity48–50. In a similar vein, structure and activity 

in medial and lateral frontal cortex as well as in the posterior parietal cortex appear to be related 

to an individual’s ability to represent what we refer to as arithmetic-complexity51. Trade-offs of 

neural resources between these networks were identified during moral decision-making52. 

Furthermore, a transcranial magnetic stimulation to the TPj decreased mentalizing capabilities, 

while simultaneously reducing activity in the ventromedial prefrontal cortex (vmPFC), 

demonstrating a direct causal evidence for an interaction between the so-called mentalizing and 

valuation networks36. Similarly, a transcranial direct current stimulation to the vmPFC increased 

mentalizing capabilities among subjects with autism syndrome disorder53. These observations 

suggest that the psychophysical assessment of each individual’s capabilities via our cognitive 

production approach may be useful for identifying neurobiological markers of strategic types in 

future work.   

Limitations of Our Approach 

There are limitations to our study. One that bears particular mention is that the highest level 

of reasoning we test in our design was Level-4. While this places our study at, or beyond, the 

ranges of most studies in the literature, it does constrain the conclusions we can draw about 

behavior in other settings. Future studies will be required to broaden these findings to more 

complex strategic environments that impose demands outside the ranges we have explored. 

Another limitation is that we do not systematically manipulate the identities of the other players 

an individual faces. Subjects may increase their reasoning level when facing other players they 

think are high-capacity individuals10,18.  

Conclusions 

In the current work we presented a novel framework, validated in two independent 

studies, for analyzing subjects’ reasoning in strategic settings. We show that owing to a trade-off 

between limited cognitive resources, subjects exhibit a psychophysical dynamic range in their 

strategic sophistication, which is unrelated to external experimental manipulations outside the 
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game design. Our novel approach is the first to provide a psychologically-grounded mechanistic 

account of levels of reasoning in games, which also mitigates previous reports on 

inconsistencies in subjects’ levels of reasoning. Finally, the nature of our psychophysical design 

calls for future neuroimaging studies, which will investigate the different brain networks involved 

in reasoning in games35–39 and will allow mapping of the inter-network trade-offs between social 

and arithmetic neural computations. Such results may also prepare the ground for 

computational psychiatric investigations of disorders of social cognition54,55.   

 

Methods 
Experimental design. We created a series of 27 different rings in a 3x3x3 design that varied in 

ring size, matrix size and levels of payoff-difference, to assay the cognitive modules that we 

hypothesized affect reasoning in games. To examine how social-complexity affects subjects’ 

reasoning, we manipulated the number of players (ring size) in each ring, which could vary 

between two and four players. A 2-person ring forces an upper bound of L2 to type 

classification, whereas a 4-person ring relaxes this bound, and enables a classification up to L4. 

Similarly, to examine how arithmetic-complexity affects subjects’ reasoning, we manipulated the 

matrix size, which could also vary between two and four choice options. This yielded a 9-cell 

grid of game types (Fig. 1b).  

Lastly, we also manipulated monetary incentives, by varying the difference in payoff 

level (in dollars) between choice options. In each of the nine game types, we created three 

levels of payoffs, for a total of 27 unique rings. That is, for the last player in each ring (“Diane”), 

the magnitude of the average value of the dominant strategy could range between $9 (low), $12 

(medium) and $18 (high), while keeping the expected value of the other inferior options constant 

at $6 (Fig. 7a). To avoid other context effects, the average value of all of the other choice 

options across all the other players in the ring (“Ann”, “Bob”, or “Charlie”) was always $10.  

Following Kneeland’s original design, all players, except the last player in the ring, had 

no strictly dominant strategies, and each ring was repeated in two variations to test the ER 

criterion. The two variants of each ring solely differed by the order of choice options for the last 

player in the ring (“Diane”). Our design also addressed criticism about the original Ring Game56. 

Namely, in some of the rings the options which survived iterated deletion of dominated 

strategies (options which match 𝑙!), were not necessarily the options with the highest reward 
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amount in each matrix (e.g. rings #2, 3, 19, 20 and 21), and could potentially lead to zero 

payoffs (e.g. rings #4, 6, 10, 11, 13, 14, 16, 19, 21 and 23). For a full list of the rings used in our 

study, see Supplementary Table 1. Supplementary Table 2 details the profiles of choices which 

would survive iterated deletion of dominated strategies in each ring.  

Procedures. Experiment 1. In each trial subjects were presented with the payoff matrix for 

every player in the ring. Matrices were revealed in order from right to left. Each matrix was 

presented for five seconds, after which subjects were told which role they were playing in that 

specific round, and had up to five seconds to submit their choices, via the number-keys on the 

top row of the keyboard (Fig. 1e). All the roles across all the rings were randomized across 

subjects. Subjects faced a total of 162 trials, divided into six blocks of 27 trials each. Each trial 

was essentially a one shot game, as subjects received no feedback until the realization of a 

three trials after the entire experiment was complete.     

Due to the complicatedness of the task, and the relative short time subjects had to 

process the information, we implemented a few standardizations of the presentation: (1) 

matrices were situated in the same location on the screen, regardless of the number of players 

in the ring at the current round. (2) We named the players in alphabetical-order: Ann, Bob, 

Charlie and Diane, instead of using the generic Player 1, Player 2 and so forth. (3) Payoff tables 

(matrices) were kept at a constant size on the screen, and numbers were presented in a fixed 

font-size, regardless of the number of actions from which subjects had to choose. For example, 

in a trial with a 2*2 matrix, subjects were presented with a 4*4 matrix, but saw numbers only 

inside a subset of four cells at the upper left corner of the matrix. This procedure enabled us to 

control for saliency and sensory effects, reducing the degree to which these could have acted 

as confounds. (4) We labeled the actions of each player using the same letters, regardless of 

matrix and ring size: Ann’s actions were always a, b, c, and d. Bob’s actions were always e, f, g 

and h. Charlie’s actions were always i, j, k and l. Diane’s actions were always m, n, o ad p. In 

trials with 2*2 or 3*3 matrices, only a subset of these letters was used for each player. For 

example, in a trial with a 2*2 matrix 4-person ring, Ann’s actions were a and b, Bob’s actions 

were e and f, Charlie’s actions were i and j, and Diane’s actions were m and n (respectively). (5) 

We also used a fixed color-coding for the matrices, such that Ann’s matrix was always shaded 

in red; Bob’s matrix was shaded in blue; Charlie’s matrix was shaded in Green; and Diane’s 

matrix was shaded in purple. All colors had the same luminance on the CIE 1931 XYZ color 

space (e.g., equal Y values) to control for relative brightness’ effects on salience and processing 

speed. (6) Finally, a gray “veil” covered the screen, and revealed each matrix every five 
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seconds; so that subjects would not be aware of the number of players in the ring that they were 

facing in that round until the end of the sequence. The gray shade of the veil had an equal Y 

value in the CIE 1931 XYZ color space to the colors that were used for the color-coding of the 

matrices. For screenshots of the experimental software, see Supplementary Note 1.  

Before the experiment started, subjects read the instructions, and thereafter completed a 

questionnaire to verify that the task was clear (both the instructions and the questionnaire are 

presented in Supplementary Notes 1-2). For further details on the questionnaire see Kneeland 

(2015)13. Soon after, subjects completed a practice block on the experimental software, which 

consisted of 15 rounds, divided into short clusters of five trials. The first cluster allowed subjects 

up to 12 seconds to view each screen in the round, the second cluster allowed 8 seconds, and 

the last cluster resembled the actual experiment, and allowed the subjects up to 5 seconds for 

each screen.  

After subjects finished the experiment, they completed a series of additional tasks. Our 

aim was to relate the model-free and the psychophysical estimates of capacity and trade-off of 

cognitive resources derived from behavior in the Ring Game, to existing psychological 

measures of personality traits, by using a battery of well-validated tasks. See Supplementary 

Table 12 for the list of tasks and for subjects’ average scores in each such task. Lastly, subjects 

also completed a demographic survey.  

Experiment 2. In Exp. 2, we wanted to test how processing times affected reasoning, to 

provide a full psychometric characterization of subjects’ reasoning capabilities as a function of 

their accessible cognitive resources. To limit the total experimental time, in Exp. 2, we used a 

subset of 18 rings out of the full array of 27 rings, which included the nine rings with the highest 

level of payoff difference, and the nine rings with the lowest level of payoff difference. We 

tested, across subjects, five different processing times that were evenly spaced in 0.2 unit 

intervals on a log-scale, i.e. 1.6, 2.5, 4, 6.3 and 10 seconds. Each subject faced (at random) two 

different durations of processing times, and completed the 18 rings twice, each at one of the two 

durations, for a total of 216 trials. Subjects faced alternating blocks (in random order), such that 

in each block all trials had the same processing time for each screen. A total of 8 blocks of 27 

trials each were presented. For Exp. 2, the practice block was divided into five clusters of 3 trials 

each, such that each cluster had a different processing time, in a descending order from 10 to 

1.6 seconds. Subjects participating in Exp. 2 did not complete the series of additional tasks. All 

other procedures were identical to Exp. 1. 
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Participants. All subjects gave informed written consent before participating in the study, which 

was approved by the New York University School of Medicine’s Institutional Review Board.  

Experiment 1. We recruited two samples: one sample (n= 60) was recruited via CraigsList to 

approximate the general New York City population. Three subjects decided to quit after reading 

the instructions, and two additional subjects were dropped from the sample due to technical 

problems during their run. We therefore report the results from the remaining 55 subjects 

(M=28, F=26, T=1, mean age=39.1, min=19, max=74). The second sample was recruited via 

the subjects’ pool of the Center for Experimental Social Science (CESS lab) at New York 

University and was made up of New York University students (n=58). One subject decided to 

quit after reading the instructions, and three additional subjects were dropped from the sample 

due to technical problems during their run. We therefore report the results of the remaining 54 

subjects (M=28, F=26, mean age=22.8, min=19, max=32). Experiment 2. Twenty-eight 

volunteering NYU students were recruited via the CESS subjects pool. Two subjects were 

dropped from the sample due to technical problems during their run. We therefore report the 

results of the remaining 26 subjects (M=11, F=15, mean age=24.6, min=19, max=32). In both 

experiments, we excluded subjects who majored in economics or business from recruitment, 

nor did we allow the participation of any subject who reported college-level coursework in Game 

Theory. 

Payoffs. Subjects received a $30 participation fee for completing the study. To ensure subjects 

were highly incentivized, three rings were randomly selected for payment at the end of the 

experiment. Subjects were randomly and anonymously matched into groups and paid based on 

their choice and the choices of their group members in the selected rings. The number of 

members in each group and the corresponding rings that were selected for payment depended 

on the number of participants in each experimental session. Subjects received the sum of the 

dollar value of their payoffs in the selected rings. In Exp. 1, the average winning amount was 

$29.5 (std=10.1, min=5, max=47) in the CL sample and $29.9 (std=9.0, min=3, max=46) in the 

NYU sample. Respectively, in Exp. 2, the average winning amount was $28.0 (std=6.2, min=17, 

max=39). 

Classification of subjects into levels of reasoning. Supplementary Table 2 presents the 

choice options that survived iterated deletion of dominated strategies for each role in each ring 

across the two variations. For our main analysis, we used Kneeland’s original identification 

strategy13. Kneeland required that a subject who satisfied (𝑘)-levels of reasoning, but not (𝑘	 +

	1)-levels, would not respond to changes in their (𝑚)-order payoffs, whenever 𝑚 was greater 
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than or equal to 𝑘. In other words, subjects’ choices should be consistent across the two 

variations of the ring for any higher-order type beyond their level of reasoning. For example, in a 

4-person ring, a subject would be classified as L2 only if their choices matched iterated deletion 

of dominated strategies for the roles of Diane and Charlie, whereas for the roles of Ann and 

Bob, they repeatedly chose the same options across the two variations (respectively), 

regardless of changes in Diane’s payoff matrix. In each ring, for each type (level of reasoning), 

we simulated all the choice profiles that matched that type. We then looked for exact matches 

between subjects’ actual choices and simulated profiles and allowed up to one mistake. In case 

subjects’ choices were within one mistake of being classified as belonging to two different types, 

we assigned them to the lower type. For further details, see Kneeland (2015)13. We refer this 

identification strategy as ER. 

 We also employed a relaxed version of ER (ERrel), similar to the one used by Brocas 

and Carillo (2021)57. In ERrel, we loosely interpreted Kneeland’s requirement that subjects 

would not respond to changes in (𝑚)-order payoffs, and allowed subjects to choose at random 

for any role beyond their level of reasoning. Following up on the example above, under ERrel, 

for L2 types, we only required that subjects followed iterated deletion of dominated strategies for 

the roles of Diane and Charlie. However, we no longer required that subjects would choose the 

same options across the two variations of the ring for the roles of Ann and Bob. Here, too, we 

allowed up to one mistake between actual choices and simulated choice profiles. The motivation 

for inducing ERrel was twofold: (1) We did not want to impose more severe classification criteria 

in longer rings. That is, according to the original ER, in a 2-person ring subjects had to match a 

specific choice profile with four trials in order to be classified as L2 (two roles * two variations of 

the rings). In contrast, in a 4-person ring, subjects had to match a profile of eight trials (four 

roles * two variations), which suggested a far more severe criterion for this type in longer rings. 

Once allowing random choice in the (𝑚)-order payoffs, we unified the classification criterion for 

L2 across all ring sizes (and all other types for that matter). (2) ERrel also addressed some 

criticisms regarding the arbitrariness implied by the original ER58. The results from the ERrel 

classification are presented in Supplementary Fig. 2.  

Since 18 of the 27 rings in our design are shorter than Kneeland’s original 4-person ring, 

we also conducted two sensitivity tests, which we termed ERNo and ERrelNO. Here, we did not 

allow any mistakes and only looked for exact matches between subjects’ actual choices and 

simulated profiles, thus mitigating the higher chances for misidentification in shorter rings. The 

results from ERNo and ERrelNo are presented in Supplementary Figs. 3 and 4 (respectively).  
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Performance index (PI) and capacity frontiers. To empirically measure Pr(𝑙!) (detailed in eq. 

(1)) for each game-type 𝑔, we presented a performance index:  

(3) 𝑃𝐼4 =	
6.(8!)"&:;"

"&;:
. 

In each trial, we examine whether the subject followed 𝑙!, the maximum number of levels of 

reasoning available for a player in position 𝑘 in the ring (yes =1, 0 otherwise). 𝑃𝑟(𝑙!)4 averages 

this score across all the trials from the same game type 𝑔 ∈ {1,2, … ,9}, i.e., all the rings within 

the same cell in the 9-cells grid depicted in Fig. 1d. Hence, for the purpose of this analysis, we 

analyze each trial independently. This means that we neglect subjects’ responses for other trials 

from the same ring where they may have failed to follow 𝑙!, even if those trials tested lower-

order types. 𝑅𝐶4 is the likelihood of following 𝑙!  by chance. Note that this probability is 50% for 

2*2 matrices with two choice options, 33.3% for 3*3 matrices with three choice options, and 

25% for 4*4 matrices with four choice options. 𝑃𝐼4 = 1 indicates that the subject was fully 

sophisticated in that game type, and 𝑃𝐼4 = 0 indicates that the subject chose completely at 

random in game type 𝑔. In cases where 𝑃𝐼4 < 0 (when 𝑃𝑟(𝑙!)4 is lower than 𝑅𝐶4), we impose 

𝑃𝐼4 = 0. The capacity frontiers presented in Fig. 4 are simply the graphical visualization of PIs 

across all game-types 𝑔. 

Model-free analysis. While 𝑃𝐼4 enabled us to explore the effect of our design within-subject, we 

also wanted to compare performance in our task across subjects, to investigate whether we 

trace differences in subjects’ capacities and trade-off over arithmetic and social resources. For 

this aim, we employed both model-free and parametric analyses. 

 In the model-free analysis, we characterized subjects’ general capacity by simply 

computing the average 𝑃𝐼4 across all game-types (“Capacity Index”). To capture subjects’ trade-

off between social- and arithmetic-complexities, we computed their trade-off index (𝑇𝑂𝐼) -     

(4) 𝑇𝑂𝐼 = 	 <&=
<

 

Where 𝑆 is subjects’ average 𝑃𝐼4 in the rings with the highest social-complexity (4-person rings), 

and 𝐴 is their average 𝑃𝐼4 in the rings with the highest arithmetic-complexity (4*4 matrices 

rings). Positive TOI indicates that subjects were more likely to follow 𝑙! in rings with a high 

social-complexity, compared to rings with a high arithmetic-complexity, and vice-versa for 

negative TOI scores. A TOI=0 indicates that the subject was equally successful in their 

reasoning, regardless of game-type. 
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Model fitting. Cognitive production function. We extracted both individual-level and aggregate-

level estimates of eq. (1) using a constrained ols regression, with the following econometric 

specification:  

(5) log( 𝑃 𝐼. + 1)  =   log 𝐶   +  𝛼 log 2 "
##
3 + (1 − 𝛼) log 2 "

%#
3 + 𝜀, 

where 𝑚. and 𝑛. are the social- and arithmetic-complexities in ring 𝑟. For technical 

considerations, we added a constant of 1 to 𝑃𝐼. to avoid the function’s asymptotes. We used 

elicited parameters to visualize the iso-probability curves, depicted in Figs. 5-6. 

Data & code availability 
The experimental software and all the datasets generated and analyzed for the current study 

will be uploaded upon publication to OSF. 
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